Conditional canonical correlation estimation based on covariates with random forests
نویسندگان
چکیده
منابع مشابه
Canonical Correlation Forests
We introduce canonical correlation forests (CCFs), a new decision tree ensemble method for classification. Individual canonical correlation trees are binary decision trees with hyperplane splits based on canonical correlation components. Unlike axisaligned alternatives, the decision surfaces of CCFs are not restricted to the coordinate system of the input features and therefore more naturally r...
متن کاملRandom Forests with Missing Values in the Covariates
In Random Forests [2] several trees are constructed from bootstrapor subsamples of the original data. Random Forests have become very popular, e.g., in the fields of genetics and bioinformatics, because they can deal with high-dimensional problems including complex interaction effects. Conditional Inference Forests [8] provide an implementation of Random Forests with unbiased variable selection...
متن کاملEasy Minimax Estimation with Random Forests for Human Pose Estimation
We describe a method for human parsing that is straightforward and competes with state-of-the-art performance on standard datasets. Unlike the state-of-the-art, our method does not search for individual body parts or poselets. Instead, a regression forest is used to predict a body configuration in body-space. The output of this regression forest is then combined in a novel way. Instead of avera...
متن کاملRandom Partition Models with Regression on Covariates.
Many recent applications of nonparametric Bayesian inference use random partition models, i.e. probability models for clustering a set of experimental units. We review the popular basic constructions. We then focus on an interesting extension of such models. In many applications covariates are available that could be used to a priori inform the clustering. This leads to random clustering models...
متن کاملDimension Reduction Based on Canonical Correlation
Dimension reduction is helpful and often necessary in exploring nonlinear or nonparametric regression structures with a large number of predictors. We consider using the canonical variables from the design space whose correlations with a spline basis in the response space are significant. The method can be viewed as a variant of sliced inverse regression (SIR) with simple slicing replaced by Bs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2021
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btab158